## **MITOCHONDRIAL DISORDERS**

#### Marni J. Falk, MD

Executive Director Mitochondrial Medicine Frontier Program The Children's Hospital of Philadelphia

Professor of Pediatrics Perelman School of Medicine University of Pennsylvania Philadelphia, Pennsylvania USA



Mitochondrial Medicine



# **DISCLOSURES**

#### Marni J. Falk, M.D. is

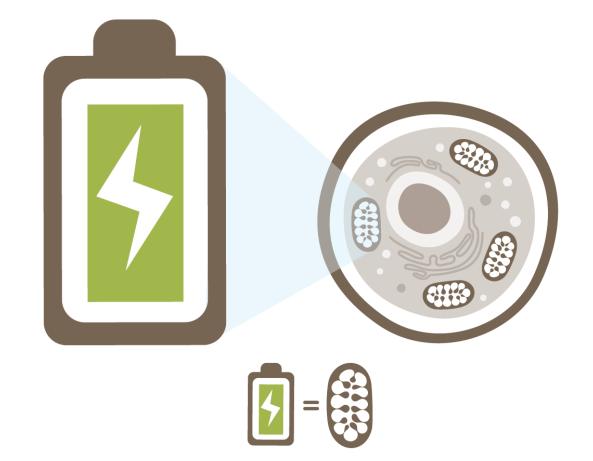
- Co-Founder and Chief Scientific Advisor
  - Rarefy Therapeutics LLC
- Scientific Advisory Board Member
  - United Mitochondrial Disease Foundation (UMDF)
  - <u>Pharma Companies</u>: Khondrion, Larimar Therapeutics, RiboNova Inc
- Research Collaborator
  - AADi, Astellas (Mitobridge), Cyclerion, Epirium Bio, Khondrion, Imel Therapeutics, Neurovive, Minovia Therapeutics, Mission Therapeutics, Raptor Pharmaceuticals, RiboNova Inc, Saol Therapeutics, Stealth BioTherapeutics
- Consultant
  - Agios Therapeutics, Abliva (formerly Neurovive), Astellas (Mitobridge), Autobahn, Casma Therapeutics, Cyclerion, Epirium Bio, GenoMind, HealthCap, Hibiscus Bio, Imel Biotherapeutics, Minovia Therapeutics, Mission Therapeutics, Neurovive, Precision BioTherapeutics, Primera Therapeutics, Taysha Gene Therapy

Children's Hospital

• PI, CHOP site

2

- North American Mitochondrial Disease Consortium (NAMDC, RDCRN)
- RTA-408 (Reata), SPIMM-301 (Stealth), IW-6463 (Cyclerion) Clinical Trials (completed) of Philadelphia
- DCA in PDH (FDA); REN-001 (Reneo); Astellas; SPIMD-301 (Stealth) Clinical Trials (active)

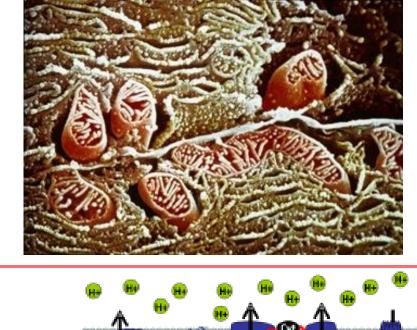

# MITOCHONDRIAL DISEASE DEFINITION AND CLINICAL FEATURES

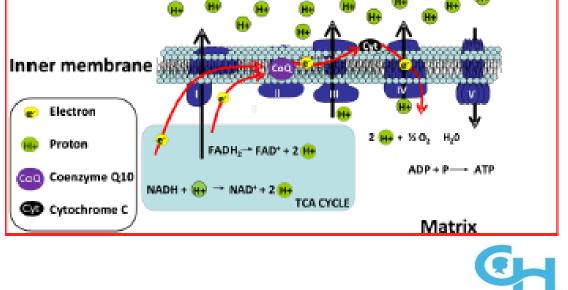


# WHAT DO MITOCHONDRIA DO?

Mitochondria function as batteries that produce energy in the body's cells.

They are particularly important in high-energy demanding organs such as the heart, liver, muscles and brain.

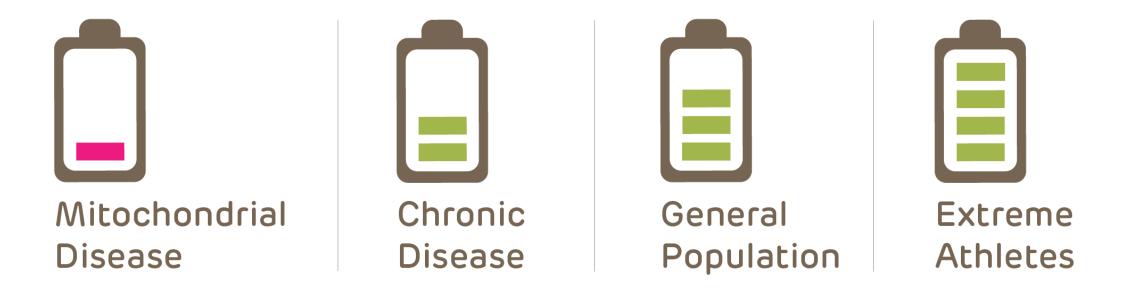




Children's Hospital of Philadelphia<sup>•</sup> | Mitochondrial Medicine

© 2018 The Children's Hospital of Philadelphia, All Rights Reserved.

# WHAT ARE MITOCHONDRIA?

- Subcellular, cytoplasmic organelles
- Arose from ancient symbiont ancestor: purple sulfur bacteria that could handle oxygen
- Regulate many cellular functions
  - 1. Energy production
  - 2. Calcium homeostasis
  - 3. Apoptosis
  - 4. Radical species generation
  - 5. Radical species scavenging
  - 6. Steroid biosynthesis
  - 7. Orchestrate metabolism






Mccormick E et al, Current Genetic Med Reports, 2018

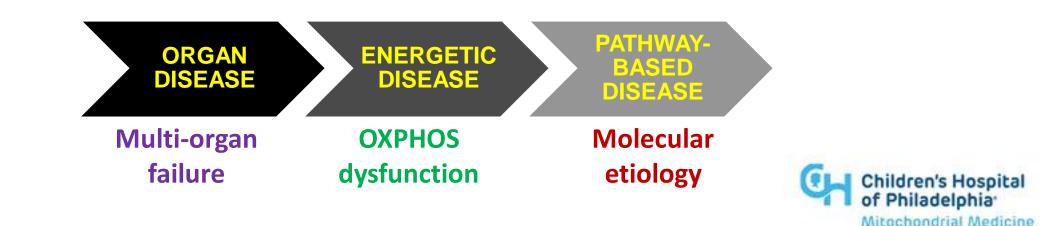
# MITOCHONDRIAL ENERGY SPECTRUM

Mitochondria create more than 90% of the energy needed by the body. When they fail, less and less energy is generated within cells. This can lead to cell damage and sometimes result in chronic diseases.



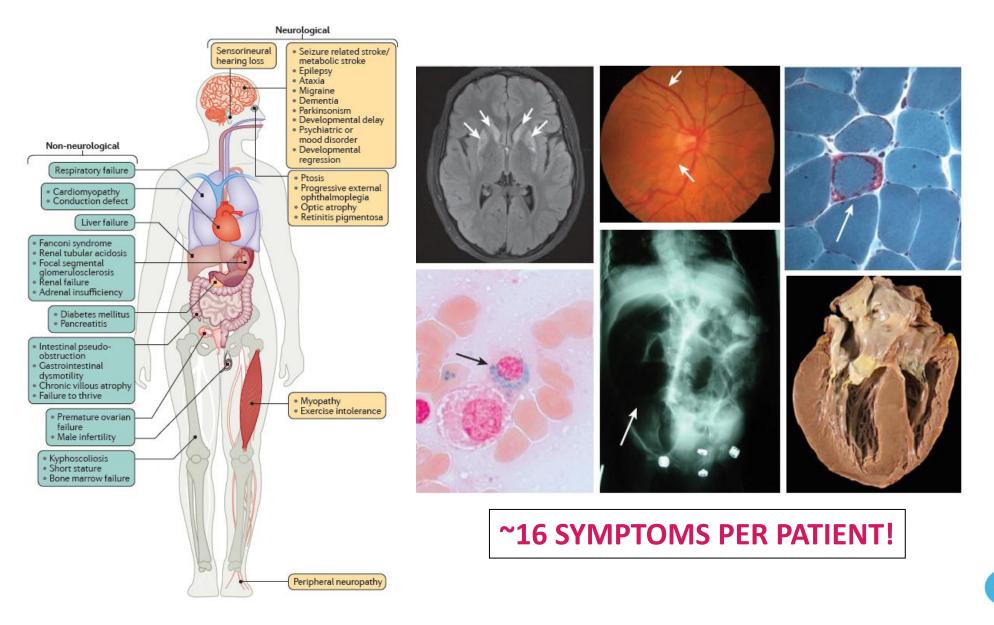
#### Children's Hospital of Philadelphia<sup>•</sup> Mitochondrial Medicine

 $\odot$  2018 The Children's Hospital of Philadelphia, All Rights Reserved.


#### MITOCHONDRIAL DISEASE: RAPIDLY CHANGING MOLECULAR UNDERSTANDING

"Any symptom, any organ, any age, any mode of inheritance" - Munnich & Rustin (*Am J Med Genet* 2001,106:4-17)

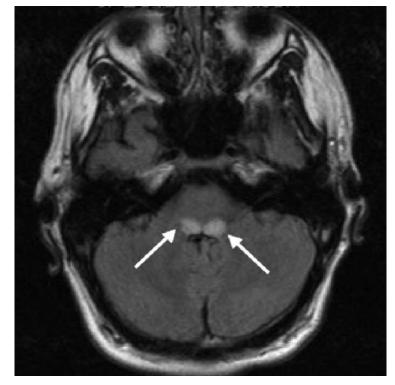
- No common biomarker for mitochondrial disease
- Over 350 different gene disorders in 2 genomes\*
  - <u>Mitochondrial DNA</u>: 37 genes

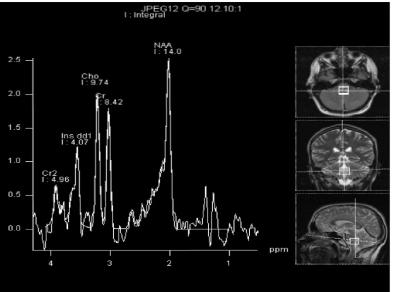

7

- <u>Nuclear DNA</u>: >300 genes
- Collectively affect > 1 in 4,300 people



\*McCormick et al, Neurotherapeutics, 2013; McCormick et al, Curr Genet Med Rep, 2018


#### **CLINICAL FEATURES OF MITOCHONDRIAL DISEASES**

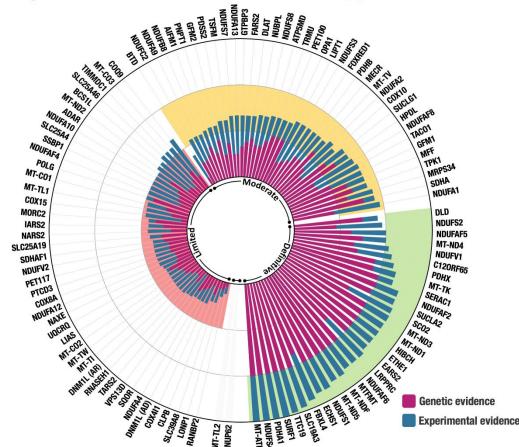



Gorman G et al, Nat Rev Dis Prim, 2016; Vafai and Mootha, Nature, 2012

# LEIGH SYNDROME

- Most common mitochondrial disease pediatric presentation
  - Neurodevelopmental regression
  - Metabolic strokes on brain MRI
- 113+ genetic causes
  - All inheritance patterns occur
  - NICHD U24 expert-panel curation effort\*
    - ClinGen & ClinVar integration
    - MSeqDR: <u>https://mseqdr.org</u>






<sup>9</sup> \*McCormick E et al, Annals Neurol, 2023; U24-HD086984

Lake et al, 2016



Leigh syndrome spectrum (LSS) is the most common manifestation of Primary Mitochondrial Disorder in children and may present in adults too.



Gene-disease relationships for LSS were established for genes across both nuclear and mitochondrial genomes.

This will allow improved diagnostics and facilitate disease surveillance, reproductive counselling, natural history studies and study design.





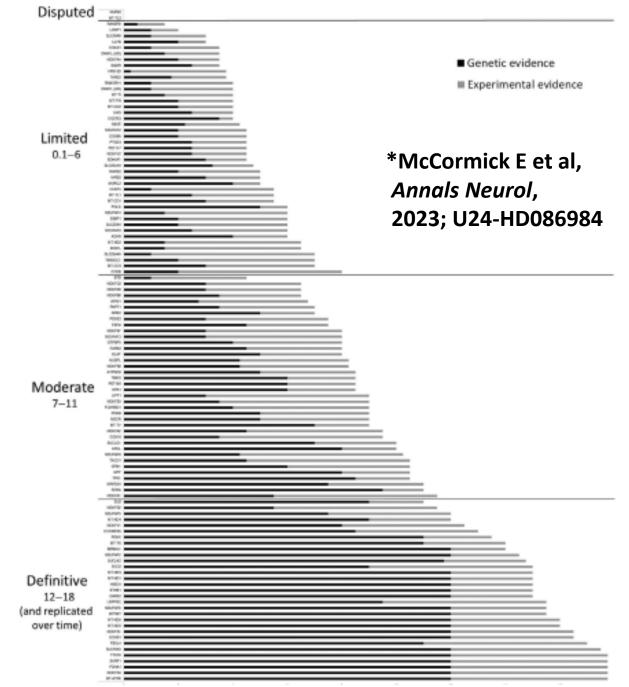
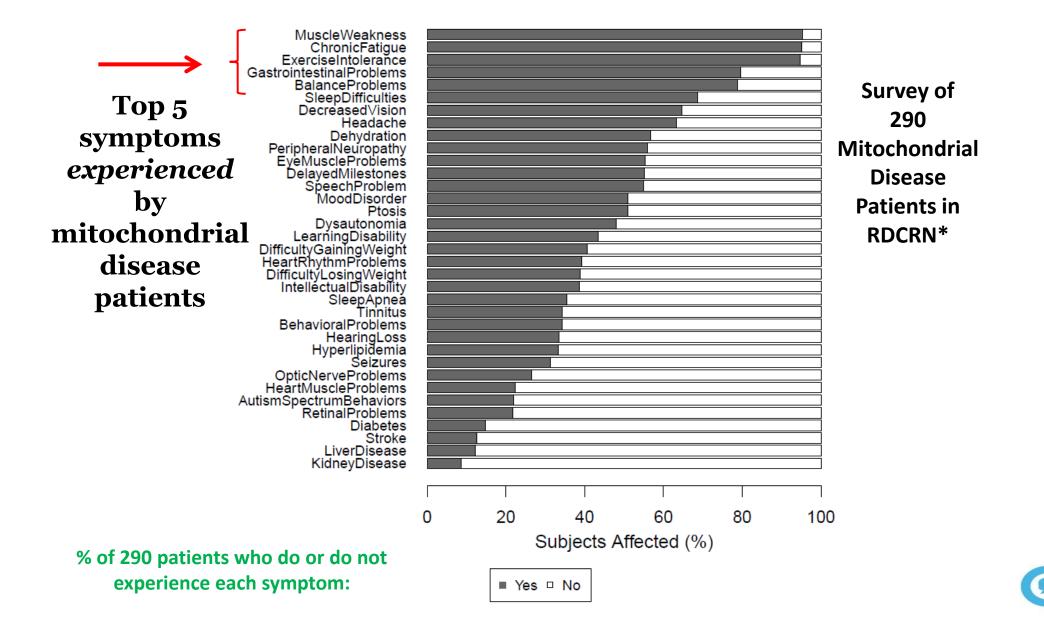




FIGURE 3: Scores for each curated gene-disease relationship with Leigh syndrome spectrum by the Mitochondrial Disease Gene Curation Expert Panel. The default scoring range for a definitive classification is 12–18, moderate is 7–11, and limited is 0.1–6.

### **Mitochondrial disease symptom frequency**



\*Zarazuela Zolkipli-Cunningham, PLOS ONE, 2018

# ARE THERE CLINICAL DIAGNOSTIC CRITERIA FOR MITO DISEASE?

- Walker Criteria (1996)
- Modified Thorburn Criteria (2002)
- Nijmegen Criteria (2006)

Definite

12

Newcastle Criteria (Adult and Pediatric scales)

Probable

- All heavily weighted on clinical + biochemical findings
- Genetic etiologies generally not known when criteria established

www.mitosoc.org

Possible

### **HISTORIC MITO DISEASE CLASSIFICATIONS:**



Unlikely

### NO COMMON BLOOD OR URINE BIOMARKER EXISTS FOR ALL MITOCHONDRIAL DISEASES

- Lactate has low sensitivity AND specificity for mitochondrial disease
  - FGF-21, GDF-15
  - Exercise testing (CPET)
- Other analytes may increase suspicion, but neither their detection or absence is diagnostic

| Biochemical Analysis for Mitochondrial Dysfunction                                                     |                                                                                                                                       |                                                                                                                                                     |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Amino Acid<br>(plasma/CSF)                                                                             | Organic Acid<br>(urine)                                                                                                               | Acylcarnitines<br>(plasma)                                                                                                                          |  |  |  |  |
| <ul> <li>Elevated alanine</li> <li>Elevated glycine,<br/>proline, sarcosine<br/>or tyrosine</li> </ul> | <ul> <li>TCA cycle<br/>intermediates</li> <li>Ethylmalonate</li> <li>3-methyl-<br/>glutaconate</li> <li>Dicarboxylic acids</li> </ul> | <ul> <li>Low free carnitine</li> <li>Elevated acyl:free carnitine ratio</li> <li>Elevations suggestive of disrupted fatty acid oxidation</li> </ul> |  |  |  |  |



#### Haas RH et al, Molecular Genetics and Metabolism, 2008

# TISSUE BIOCHEMISTRY ROLE IN MITOCHONDRIAL DISEASE DIAGNOSIS

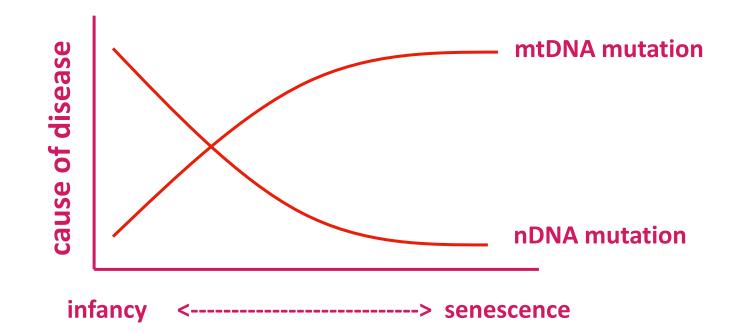
- OXPHOS disorders are most common inborn errors of metabolism
  - Combined prevalence ~1 in 4,300 across all ages
- Polarographic OXPHOS analysis of respiratory capacity
  - Historically, the diagnostic "Gold Standard"
  - Measures integrated mitochondrial function
  - Freshly isolated cells or tissues
- Electron transport chain (ETC) enzyme activities analysis
  - Fresh vs frozen tissue
  - Widely accessible and utilized
    - Not directly concordant with OXPHOS results



## MITOCHONDRIAL DISEASE CAUSES AND DIAGNOSTIC APPROACH



# **MITOCHONDRIAL DISEASE ETIOLOGIES**




- PRIMARY:
  - Genetic based mitochondrial dysfunction
    - Nuclear or mitochondrial DNA pathogenic variant
  - >95% disease genes encode mitochondrial proteins
    - Chronic and/or stress-induced disease



- SECONDARY:
  - Mito dysfunction occurs as secondary finding in other disorder
    - Acute or chronic mitochondrial impairment
    - Gene disorders in which mitochondria are impaired as an "innocent bystander" effect
    - Toxic, pharmacologic, or environmental exposure
    - Aging

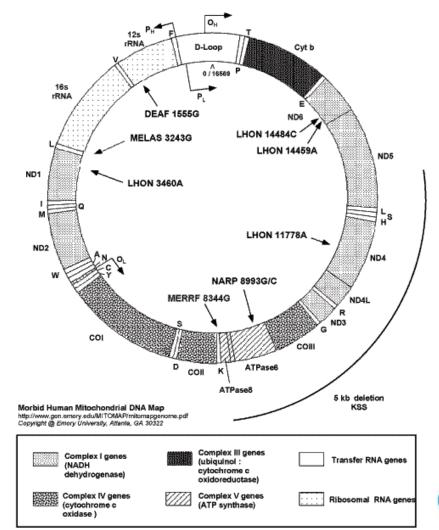
### GENOMIC CONTRIBUTION TO MITOCHONDRIAL DISEASE VARIES ACROSS THE LIFESPAN



- Diseases with immediate onset after birth (congenital lactic acidosis) are most frequently due to autosomal recessive <u>nDNA</u> defects
- Diseases with later (adult) onset more often result from <u>mtDNA</u> mutations



## mtDNA DISORDERS

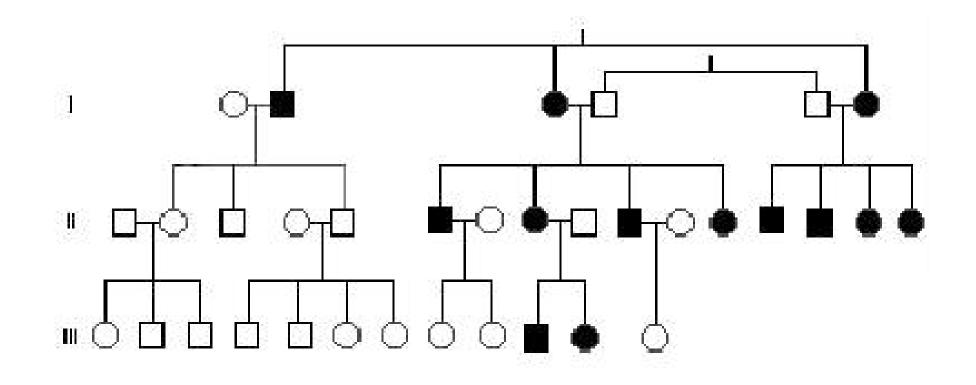



# **MITOCHONDRIAL DNA (mtDNA)**

Mitochondrial genome has 16,569 base pairs
Double-stranded

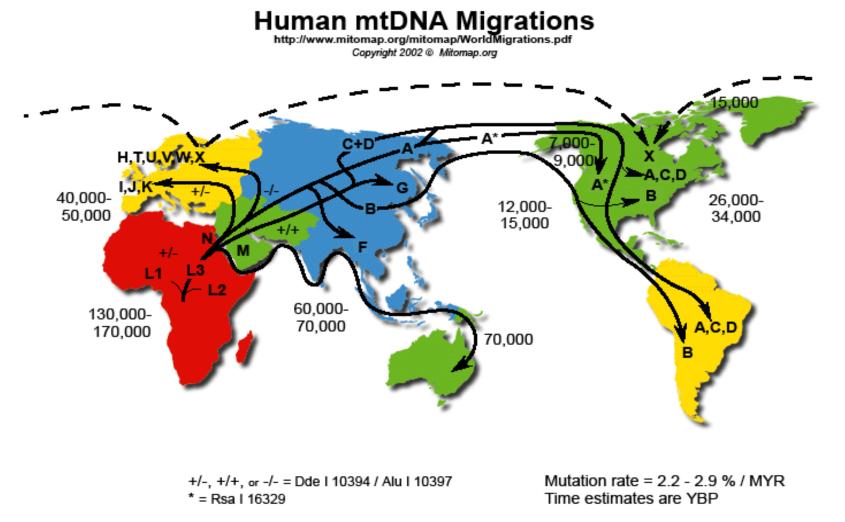
Mammalian mtDNA contains 37 genes:

- •13 polypeptides
  - Complex I: 7/45 subunits
  - Complex II: 0/4 subunits
  - Complex III: 1/11 subunits
  - Complex IV: 3/13 subunits
  - Complex V: 2/12-13 subunits
- •22 tRNAs
- •2 rRNAs (12S and 16S )




# **KEY FEATURES OF mtDNA GENOME**

- No introns
- No homologous recombination or meiosis
- Replication is continuous, not synchronized with cell cycle
- Relative to nDNA, mtDNA has a high mutation rate
  mtDNA exists in a "nucleoid" but has no histones
- Disease-causing mtDNA mutations occur in tissue-specific fashion
  - Point mutations (single or few nucleotide basepairs)
  - Deletions or duplications (common 5 kilobase deletion)
  - Depletion or proliferation (mtDNA genome copy number change)




### mtDNA IS MATERNALLY INHERITED



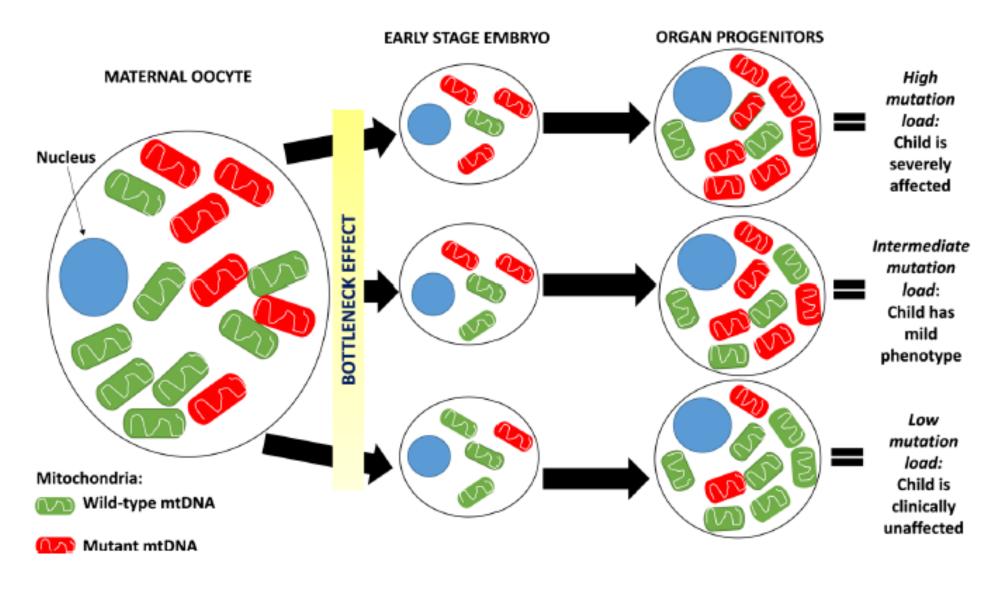


#### NATURAL mtDNA VARIATION DEFINES HAPLOGROUPS AND HUMAN EVOLUTION



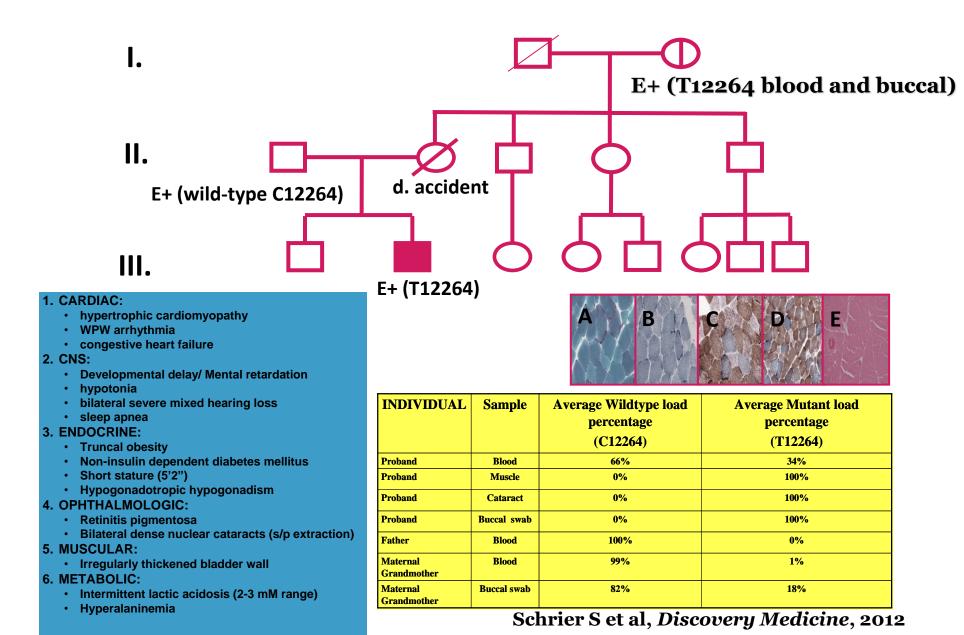


"Number of (fixed, homoplasmic) mtDNA differences between any 2 people indicates the time since they shared a common mother" – Douglas Wallace, PhD, CHOP CMEM/Upenn


## MAJOR mtDNA DISEASE CONCEPTS: HETEROPLASMY & THRESHOLD EFFECT

- Multiple copies of mtDNA are in every cell/tissue/organ
  - 2-10 genomes per mitochondrion
  - 10<sup>2</sup>-10<sup>3</sup> mitochondria per cell
- "Heteroplasmy" vs. "Homoplasmy" for a mtDNA mutation
  - "Homoplasmic wild-type" = only wild-type mtDNA present
  - "Homoplasmic mutant" = only mutant mtDNA present
  - "Heteroplasmy" = 2 different populations of mtDNA are present in a given cell or tissue (eg, wild-type and mutant)
- "Threshold Effect":
  - Specific heteroplasmy load for a specific mtDNA mutation that any given tissue tolerates before it shows signs of pathology
    - Different tolerance for the exact level of abnormal mtDNA accumulation that will cause disease




## **HETEROPLASMY**

# **THRESHOLD EFFECT**

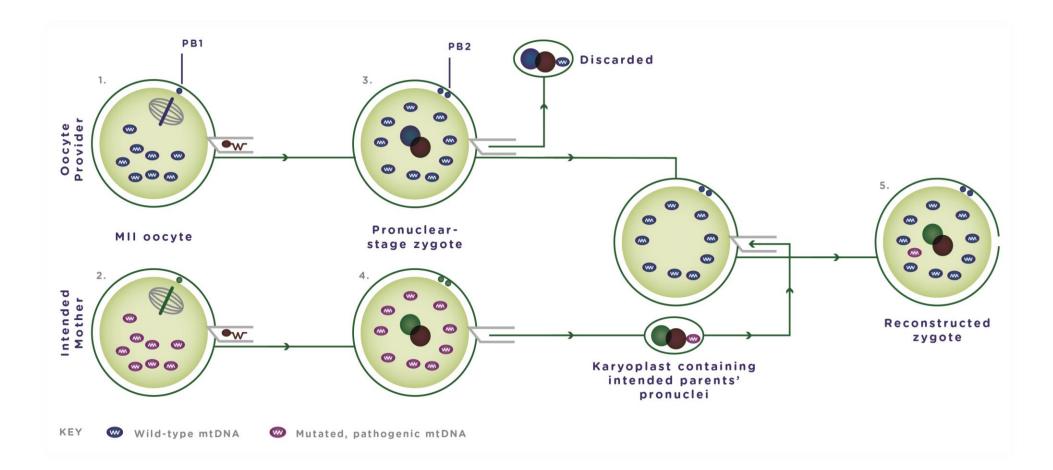


Mccormick E et al, Current Genetic Med Reports, 2018

#### mtDNA MUTATION → MULTI-SYSTEM PROBLEMS






# **PGD FOR mtDNA DISEASE?**

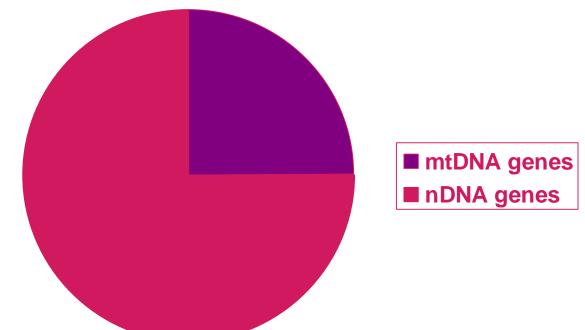
- Controversial, but current understanding suggests may consider a trial (test in UK lab)
  - Perform for only known pathogenic mutations in day 3 embryo
  - Genetic bottleneck of mtDNA # in embryogenesis (few thousand mtDNAs)
  - <5% heteroplasmy in blastomere "unlikely" to increase to clinically significant levels in child
    - MRT results in 1-2% mutant mtDNA heteroplasmy carryover
- Children born following PGD
  - Likelihood to identify a low-level embryo varies
    - Whether mother is/not mtDNA mutation carrier
    - Specific mutation (m.8993 NARP mutation tends to be present at very low or very high levels in embryos)
    - mtDNA technical analysis method used (NGS preferred) and center experience
  - Need to follow child long-term in mitochondrial medicine clinical center
    - Blood mtDNA level may not reflect variable tissue levels
    - Some mtDNA disorders do not present until later childhood/adult
    - Low-level mtDNA mutations often have multi-system findings such as diabetes, hearing loss, headaches, etc

#### <u>Mitochondrial Disease: Nora's Story | Children's Hospital of Philadelphia</u> (chop.edu)

Mitalipov et al, Cell Reports, 2014

### Mitochondrial Replacement Techniques: PRONUCLEAR TRANSFER




SOURCE: Modified figure based on those appearing originally in: Richardson, J., L. Irving, L. A. Hyslop, M. Choudhary, A. Murdoch, D. M. Turnbull, and M. Herbert. 2015. Concise reviews: Assisted reproductive technologies to prevent transmission of mitochondrial DNA disease. Stem Cells 33(3):639-645. License information available at: <u>http://creativecommons.org/licenses/by/4.0/</u>



## NUCLEAR GENE BASED MITOCHONDRIAL DISEASE



### NUCLEAR GENE DISORDERS COMMONLY CAUSE MITOCHONDRIAL DISEASE



- nDNA plays LARGER ROLE in mitochondrial disease
  - 1,500+ nDNA-encoded gene products in mitochondria
  - >250 nuclear genes implicated in MRC disease
    - Several 100 more novel nuclear gene causes to discover...



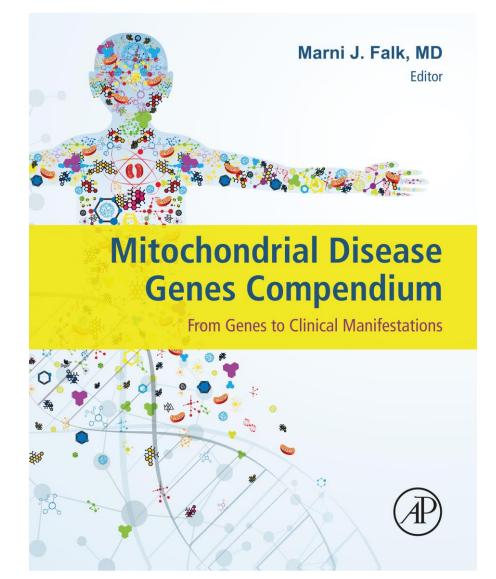
# MITOCHONDRIAL DISEASE MOLECULAR DIAGNOSIS SUMMARY

- Primary mitochondrial diseases commonly result from mutations in nuclear DNA genes
  - All inheritance patterns are seen
  - 350+ nuclear gene disorders directly impair mitochondrial function
    - Genes grouped into several major functional categories
      - OXPHOS Subunits
      - OXPHOS biogenesis or regulation
      - mtDNA maintenance or expression
      - Nucleotide transport or synthesis
      - Membrane dynamics
  - *POLG* is most common, but still relatively rare (~3%), single gene cause of nuclear-based mito disease

## **MITOCHONDRIAL DISEASE INHERITANCE**

| Inheritance<br>Pattern: | Disease Example:                                                                                                                                         | Recurrence Risk<br>to Full Siblings:                                                                                                                                                                                              | Recurrence Risk<br>to Offspring of<br>Affected<br>Females:                                                                                                    | Recurrence Risk<br>to Offspring of<br>Affected Males:                                                                       |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Maternal                | mtDNA point mutations;<br>mtDNA large deletions <u>+</u><br>duplications (rare)                                                                          | 1-4% if no symptoms in<br>mother;<br>up to 50% if<br>symptomatic mother<br>(EMPIRIC RISK)                                                                                                                                         | Up to 50% for both<br>sons and daughters                                                                                                                      | None                                                                                                                        |
| Autosomal<br>Recessive  | Mutations in nDNA-encoded<br>respiratory chain subunits or<br>assembly factors;<br>mtDNA depletion ( <i>POLG1</i> ,<br><i>TK2</i> , <i>DGUOK</i> , etc.) | 25%                                                                                                                                                                                                                               | All children will be<br>carriers (likely<br>asymptomatic);<br>Affected status depends<br>on population carrier<br>frequency                                   | All children will be<br>carriers (likely<br>asymptomatic);<br>Affected status depends<br>on population carrier<br>frequency |
| Autosomal<br>Dominant   | Progressive external<br>ophthalmoplegia ( <i>POLG1</i> )                                                                                                 | 50% if parent is<br>affected;<br><1% based on germline<br>mosaicism if parent is<br>asymptomatic                                                                                                                                  | 50% for both sons and daughters                                                                                                                               | 50% for both sons and daughters                                                                                             |
| X-linked                | Sideroblastic anemia ( <i>ABC7</i> );<br>Barth syndrome ( <i>tafazzin</i> );<br>Mohr-Tranebjaerg syndrome<br>( <i>DDP1</i> )                             | <u>If mother is a carrier</u> :<br>50% for brothers to be<br>affected & 50% for<br>sisters to be carriers<br>(likely asymptomatic);<br><u>If <i>de novo</i></u> , <1% for<br>brothers to be affected<br>or sisters to be carriers | If symptomatic mother,<br>50% for sons to be<br>affected and 50% for<br>daughters to be<br>carriers/affected<br>(depending on her x-<br>inactivation pattern) | None for sons;<br>50% for daughters to<br>be carriers (likely<br>asymptomatic)                                              |
| Sporadic                | Muscle biopsy evidence of<br>respiratory chain dysfunction<br>without clear genetic etiology                                                             | Uncertain                                                                                                                                                                                                                         | Uncertain                                                                                                                                                     | Uncertain                                                                                                                   |




#### Falk MJ (2008) In: Mito 101 CD, Eds. S. Parikh, S. DiMauro, UMDF

#### **MITOCHONDRIAL DISEASE DIAGNOSTIC ALGORITHM**

Curr Genet Med Rep (2018) 6:62-72



#### MITOCHONDRIAL DISEASE GENES COMPENDIUM



#### **KEY FEATURES:**

- Provides a readily intelligible, all-in-one reference of known mitochondrial disease genes & associated conditions
- Features live links to MSeqDR Web pages, with regularly updated genetic variant data and bioinformatics tools
- Covers inheritance patterns, age spectrum affected, major clinical features, therapeutics, support groups, and research under way for over 250 mitochondrial diseases



#### MITOCHONDRIAL DISEASE SEQUENCE DATA RESOURCE <u>HTTPS://MSEQDR.ORG</u>

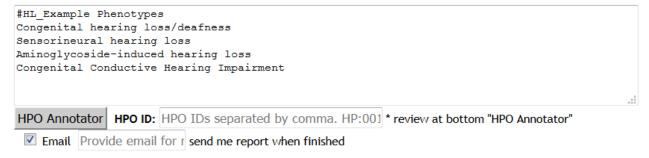
| ıt | GBrowse                                                                                                                          | MSeqDR-LSDB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tools                | Phenome                                                                        | Collaboration                                                                                                          | Submission                                    | MSeqDR PhenoTips                                                                                 | <u>lshen</u> <u>Log Out Clinician M</u>                                                                                                                                                        |
|----|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Se | PADR                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Genomic Sea                                                                    | rch 💌 Enter sear                                                                                                       | ch term here. Mou                             | se-over for examples.                                                                            |                                                                                                                                                                                                |
|    |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MSeqDR               | the Mitocl                                                                     | hondrial Diseas                                                                                                        | se Sequence D                                 | ata Resource Consortiun                                                                          | n                                                                                                                                                                                              |
|    |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Securel              | / <u>collects</u> and                                                          |                                                                                                                        | <mark>re diseases</mark> , pati               | ase experts.<br>ents and causative <u>mutations</u> .<br><u>mtDNA mutations</u> .                |                                                                                                                                                                                                |
|    |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Cho                                                                            | ose a Tool to                                                                                                          | o Analyze Ye                                  | our Data:                                                                                        |                                                                                                                                                                                                |
|    |                                                                                                                                  | single gene, v<br>, disease, phen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | I have                                                                         | variants or ge                                                                                                         |                                               | have VCF from WES or<br>/GS, and clinical data                                                   | I have raw sequence<br>data                                                                                                                                                                    |
|    | C<br>Variant: <u>m</u><br>Cli<br>Dis                                                                                             | Genomic Search   hterm. Mouse-over hterm. Mouse-over hterm. Mouse-over hterm. Mouse-over hterm. Mile State hterm. Mile S | 2757T>C<br>5,<br>1e, | <u>mvTool (n</u><br><u>OneStopV</u><br><u>DNA)</u><br>• Haplogro<br>• Gene Ann | /ariant (mtDNA<br>up: <u>Phy-Mer</u>                                                                                   | + nuc. • HPO<br>Text<br>• Dise                | k-Mitome Interpretation<br>Exomiser and HPO<br>Mapping from Clinical<br>ase Browser, HPO Browser | <ul> <li>Fastq, Fasta, BAM:</li> <li>Haplogroup: <u>Phy-Mer</u>,<br/><u>MToolBox</u></li> <li>Variant Calling &amp;<br/>Annotation: <u>MToolBox</u></li> </ul>                                 |
| [  |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Choo                                                                           | se a Tool to I                                                                                                         | Browse MSe                                    | qDR Data:                                                                                        |                                                                                                                                                                                                |
|    | <ul> <li><u>Genes Vie</u></li> <li><u>Mitochond</u></li> <li><u>Genomic V</u></li> <li><u>LSDB Stat</u><br/>Diseases:</li> </ul> | rial Disease Add <sup>©</sup><br>/ariants Add<br>istics<br>183 <sup>®</sup> , Variants: <u>39</u><br>68 , mtDNA Tracks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>91/3723</u> 8     | CPEO, MEL<br>• <u>HPO Pheno</u><br>• <u>Haplogrou</u>                          | Data<br>rowser (Leigh, LH<br>AS, Myopathy<br>otype Browser<br>ps: PhyloTree & r<br>n Data: <u>Awsomics</u><br>Subjects | ) <u>MSec</u><br>Mito<br>HGNC<br><u>pdf</u> t | Visualization<br>DR GBrowse<br>Genome Diagram with both<br>and classical gene names:<br>iff      | Collaboration Teams         • MSeqDR mtDNA Expert<br>Panel         • U24 for Leigh Disease         • MSeqDR Phenotype CDE         • Scientific and Medical<br>Advisory Board (SMAB) of<br>UMDF |



Falk MJ et al, Mol Gen Metab, 2015; Shen L et al, Hum Mut, 2016; Shen L et al, Hum Mut, 2018

34

#### Mito-QuickExome in 5 minutes - MSeqDR Phenotype-Guided WES Quick Interpretation Toolbox


Phy-Mer: Mitochondrial haplogroup classification

Add link to all variants, genes, HPO and OMIM entries

Heteroplasmy calculation

Create patient record

#### Input clinical symptoms and diagnosis description and double click "HPO Annotator" button



#### Upload Variant and Pedigree File (VCF format v4, the sample column is required):

MSeqDR mtDNA annotation
VEP annotation and filtering

gnoMAD Exome AF annotation

Limit to transcribed regions and 10-bp flanking

ClinVar annotation

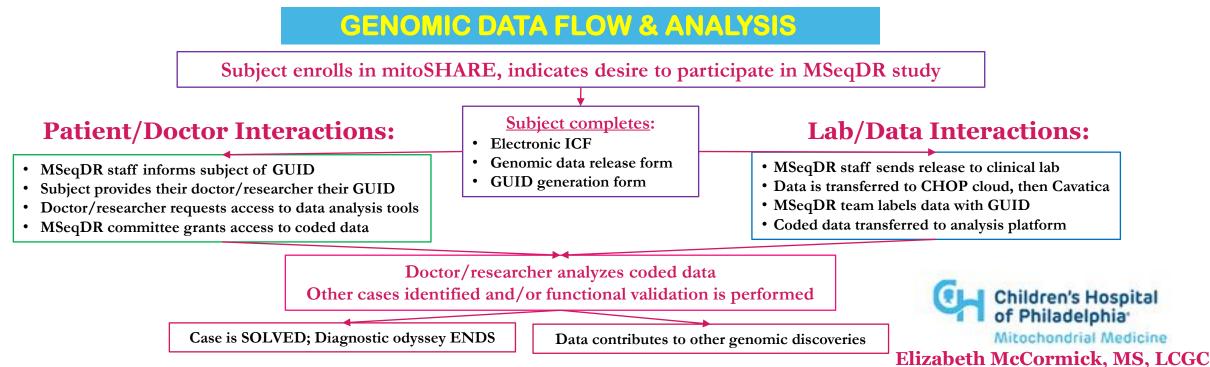
dbNSFP annotation

| Select Files                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Add files Start upload Remove all                                                                                                                                                                                   |
| Drag & Drop vcf or Pedigree File Here. Using VCF format v4, the sample genotype column is required.<br>Optionally upload *.ped file for family-based analysis. Aftr uploading, click <u>Refresh</u> to see the file |
| Refresh                                                                                                                                                                                                             |
| Variant VCF files available:                                                                                                                                                                                        |
| 11. Demo0001.vcf - 407.786 KB - 2017-07-11 04:11:00 🔹                                                                                                                                                               |
| Annotate Download Delete                                                                                                                                                                                            |
| Pedigree files available:                                                                                                                                                                                           |
| 1. Demo0001.ped - 0.153 KB - 2017-07-11 04:11:06 🔹 🔲 Use this *.ped file                                                                                                                                            |
| Create PED Download PED Delete PED                                                                                                                                                                                  |
| * Do not re-submit or refresh, must leave this page to run till it is completed. The run may need about 15 minutes for input with 1500 variants. Use email function to receive result notice, or View Result Here   |
| MSeqDR Tool Settings:                                                                                                                                                                                               |



#### Lishuang Shen, MSeqDR Bioinformatician

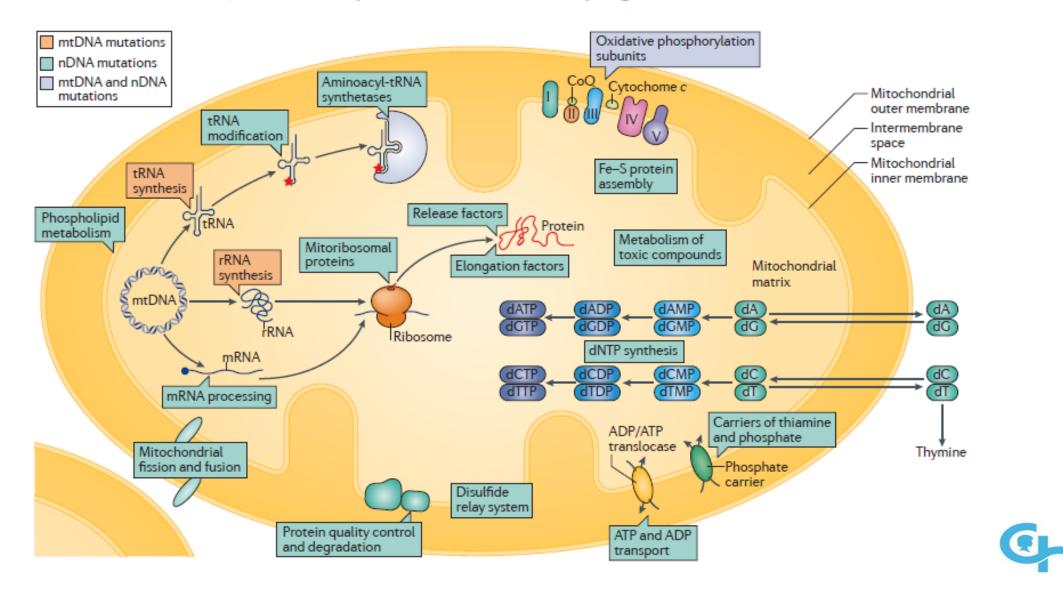
#### UMDF EMPOWERED COMMUNITY GENOMIC DATA ANALYSES: Patient-directed Genomic Data File Reanalysis Through mitoSHARE in MSeqDR-OpenCGA


#### BACKGROUND

- Many individuals with features highly concerning for mitochondrial disease lack a confirmed genetic etiology
- Clinical genetic diagnostic testing typically only reports variants in *known* disease genes; limits opportunity for *gene discovery*
- No community-wide mechanism has existed to empower individuals and their families to choose who can access and meaningfully analyze their existing genomic data

36

#### METHODS


- UMDF-led mitoSHARE mitochondrial disease patient registry was launched in March 2022
- Participants can be informed of research studies for which they may be eligible if interested
- MSeqDR genomic data sharing study was approved by the Institutional Review Board (IRB) at Children's Hospital of Philadelphia (CHOP, Falk PI) in January 2022



# **MITOCHONDRIAL DISEASE THERAPIES**



## Mitochondrial disease: Molecular pathways effected by genetic disorders



#### \*Gorman G et al, Nat Rev Dis Primers, 2016

## MITOCHONDRIAL MEDICINE SOCIETY: TREATMENT & PREVENTATIVE CARE GUIDELINES

- Exercise guidelines
- Acute stroke guidelines
- Anesthesia guidelines
- Acute illness guidelines
- Vitamin use guidelines

Consensus recommendations for vitamin and xenobiotic use

- CoQ<sub>10</sub> should be offered to most patients with a diagnosis of mitochondrial disease and not exclusively used for primary CoQ<sub>10</sub> deficiency.
  - a. Reduced CoQ<sub>10</sub> (ubiquinol) is the most bioavailable form and, when used, dosing should be appropriately modified.
  - b. Plasma and/or leukocyte CoQ<sub>10</sub> levels are helpful in monitoring absorption and adherence to treatment. Plasma levels are more variable and less reflective of tissue levels.
- 2. ALA and riboflavin should be offered to mitochondrial disease patients.
- Folinic acid should be considered in mitochondrial disease patients with central nervous system manifestations and routinely administered to those with documented CSF deficiency or with disease states known to be associated with deficiency.
- L-Carnitine should be administered to mitochondrial disease patients when there is a documented deficiency and levels should be monitored during therapy.
- When beginning supplement therapy, one should begin one at a time when possible, taking into account a patient's clinical status.
- 6. There is no evidence to suggest that one can adjust a person's diet on the basis of ETC results.
- Goal levels for most vitamin therapy used are not yet known; it is prudent to replace deficiency states.

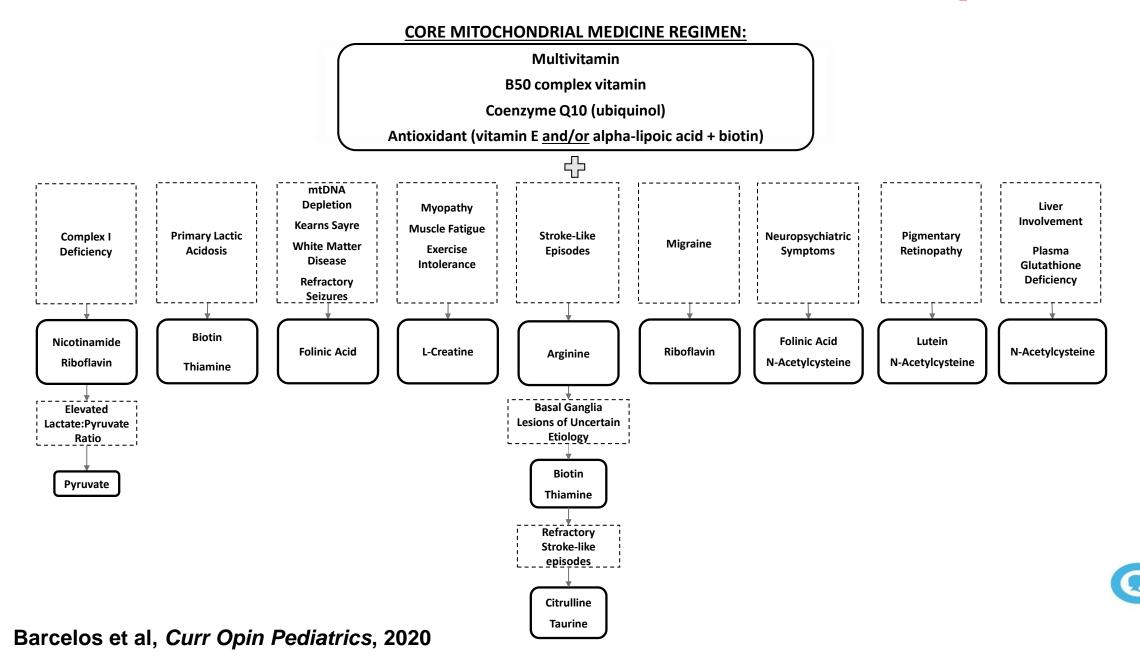
\*Parikh S et al, Genetics in Medicine, 2014; Parikh et al, Genetics in Medicine 2017

# MITOCHONDRIAL DISEASE HAS NO FDA APPROVED THERAPIES OR CURES

## Individually rare disorders

- High genetic heterogeneity: >350 genes
- High phenotypic heterogeneity: 16 symptoms/patient average\*
- No universal biomarker

40


## Therapeutic options are limited

- Exercise: aerobic and isotonic
- Nutritional therapy underexplored
- One-size-fits-all empiric "supplement cocktails" \*\*
  - Enzyme co-factors (vitamin B1 or B2)
  - Metabolite therapies (arginine, folinic acid, creatine)
  - Enzyme activators (dichloroacetate)
  - Antioxidants (vitamin C or E, lipoic acid, coenzyme Q)





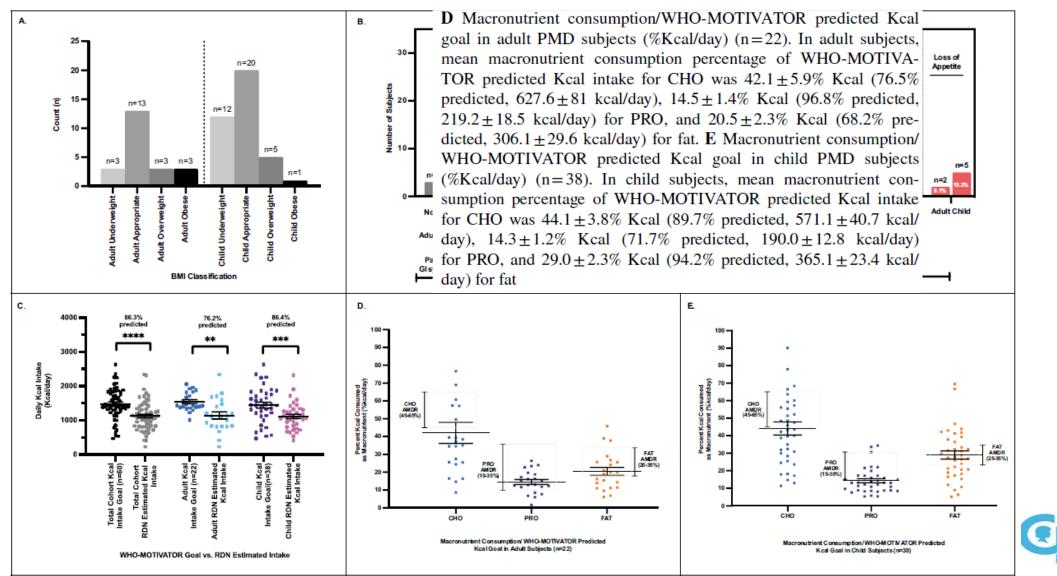
# **Mitochondrial Medicine Therapies**



# **Treatable Gene-Specific Mito Disorders**

| Affected pathway                                                   | Clinical syndrome                                            | Affected gene(s)                                               | Clinical phenotype                                                                                        | Therapeutic substance                                                                                                   | Treatment response                                                               |
|--------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Primary disorders of<br>mitochondrial                              | Brown-Vialetto-Van Laere syn-<br>drome / Fazio-Londe disease | SLC52A2, SLC52A3,<br>(SLC52A1) <sup>a</sup>                    | Sensorineural hearing loss, cra-<br>nial nerve palsies                                                    | Riboflavin (oral: 10-50 mg/kg/<br>day) <sup>b</sup>                                                                     | Generally good                                                                   |
| vitamin cofactor<br>metabolism                                     | Biotin-thiamine-responsive basal<br>ganglia disease          | SLC19A3                                                        | Episodic encephalopathy, dys-<br>tonia, seizures                                                          | Thiamine (oral: 10-20 mg/kg/<br>day), biotin (oral:<br>10-15 mg/kg/day) <sup>c</sup>                                    | Generally good                                                                   |
|                                                                    | Biotinidase deficiency                                       | BTD                                                            | Dermatitis, muscular hypotonia,<br>developmental regression                                               | Biotin (oral: 5–10 mg/kg/day) <sup>d</sup>                                                                              | Generally good                                                                   |
|                                                                    | Holocarboxylase synthetase<br>deficiency                     | HLCS                                                           | Skin lesions, metabolic acidosis,<br>seizures, developmental delay                                        | Biotin (oral: 10-20 mg/kg/<br>day)*                                                                                     | Variable but generally<br>good                                                   |
|                                                                    | Thiamine pyrophosphokinase<br>deficiency                     | TPKI                                                           | Episodic encephalopathy, dys-<br>tonia, spasticity                                                        | Thiamine (oral: ~20 mg/kg/<br>day) <sup>f</sup>                                                                         | Variable (<10 patients<br>treated so far)                                        |
| Disorders with indirect<br>response to mito-                       | ACAD9 deficiency                                             | ACAD9                                                          | Encephalopathy, myopathy,<br>hypertrophic cardiomyopathy                                                  | Riboflavin (oral: 10-20 mg/kg/<br>day) <sup>g</sup>                                                                     | Variable                                                                         |
| chondrial vitamin<br>cofactor<br>supplementation                   | Multiple acyl-CoA<br>dehydrogenase deficiency                | ETFA, ETFB, ETFDH,<br>SLC25A32, FLADI                          | Early childhood multisystem dis-<br>ease or late-onset form with<br>muscle weakness, hepatopathy,<br>etc. | Riboflavin (oral: ~10 mg/kg/<br>day) <sup>h</sup>                                                                       | Generally good                                                                   |
|                                                                    | Thiamine-responsive pyruvate<br>dehydrogenase deficiency     | PDHAI                                                          | Neonatal lactic acidosis, seizures,<br>developmental regression,<br>spasticity                            | Thiamine (oral: 30–40 mg/kg/<br>day) <sup>1</sup>                                                                       | Variable                                                                         |
| Disorders of mitochon-<br>drial non-vitamin<br>cofactor metabolism | Coenzyme Q <sub>10</sub> deficiency                          | PDSSI, PDSS2, COQ2,<br>COQ4, COQ6, COQ7,<br>ADCK3, ADCK4, COQ9 | Variable phenotypes, ranging<br>from adult-onset myopathy to<br>fatal neonatal presentations              | Coenzyme Q <sub>10</sub> (oral:<br>10–30 mg/kg/day) <sup>j</sup>                                                        | Highly variable depend-<br>ing on the underlying<br>defect                       |
| Disorders of mitochon-<br>drial inorganic<br>cofactor metabolism   | Cytochrome c oxidase<br>deficiency                           | SCO 2, CO A6                                                   | Infantile<br>encephalocardiomyopathy                                                                      | Copper-histidine (dose un-<br>clear; subcutaneous injec-<br>tions of up to 500 µg daily<br>were suggested) <sup>k</sup> | Unclear, only one<br>SCO2 patient treated;<br>only in vitro evidence<br>for COA6 |
|                                                                    | Molybdenum cofactor deficiency                               | MOCSI, MOCS2, GPHN                                             | Infantile-onset epileptic enceph-<br>alopathy, progressive brain<br>damage                                | Cyclic pyranopterin mono-<br>phosphate (intravenous:<br>80-320 µg/kg/day) <sup>1</sup>                                  | Generally good in<br>MoCD type A<br>patients                                     |
| 'Inhibitors' of<br>mitochondrial<br>metabolism                     | 3-Hydroxyisobutyryl-CoA<br>hydrolase deficiency              | HIBCH                                                          | Infantile Leigh-like phenotype                                                                            | Valine-restricted diet <sup>m</sup>                                                                                     | Unclear, only few pa-<br>tients treated                                          |
|                                                                    | Encyl-CoA hydratase deficiency                               | ECHS I                                                         | Infantile Leigh-like phenotype                                                                            | Valine-restricted diet <sup>n</sup>                                                                                     | Unclear, only few pa-<br>tients treated so far                                   |
|                                                                    | Thioredoxin 2 deficiency                                     | TXN2                                                           | Cerebellar atrophy, dystonia,<br>seizures, peripheral neuropathy                                          | Antioxidant treatment (e.g.<br>Idebenone up to 20 mg/kg/<br>day)°                                                       | Apparently good (only<br>one patient reported)                                   |
|                                                                    | Ethylmalonic encephalopathy                                  | ETHEI                                                          | Severe, multisystem infantile<br>disorder                                                                 | Metronidazole, N-acetyl cyst-<br>eine as glutathione precur-                                                            | Variable                                                                         |

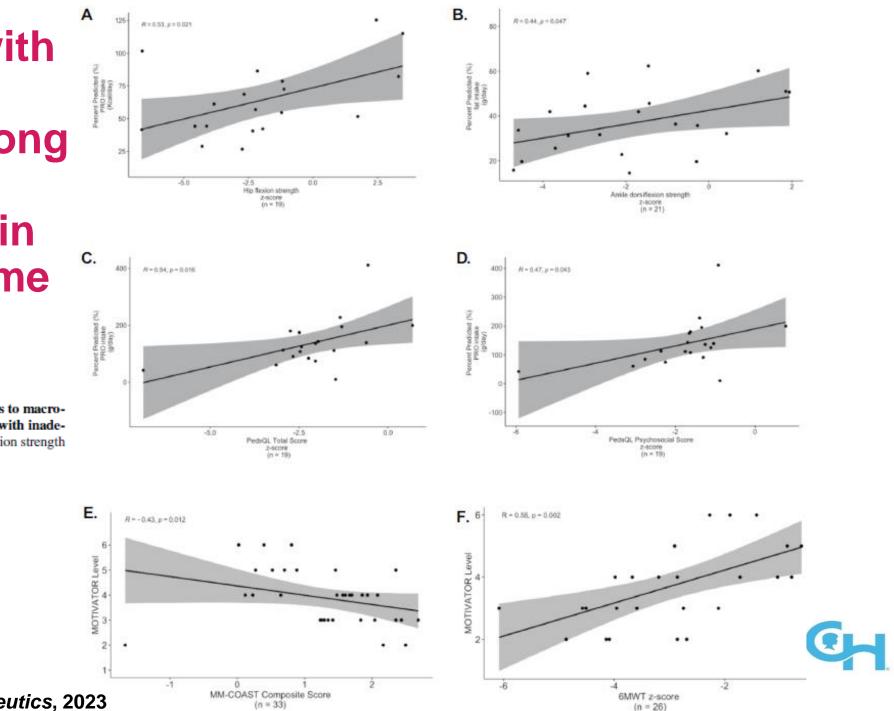
#### \*Distelmaier F. et al, Brain, 2017


sor, liver transplantation<sup>p</sup>

**Q**H

# Nutritional Guidance is Limited in Mitochondrial Disease

- Evaluate energy, protein & micronutrient intake
  - Assess for relative under-nutrition
    - Consider energy expenditure, intake, and absorption\*
    - May require gastrostomy tube or parental nutrition
    - Treat swallowing dysfunction, abnormal gut motility, behavioral feeding issues, and gastroesophageal reflux to optimize nutritional intake\*\*
  - Monitor for essential micronutrient deficiency
    - + B12 (13%), D (>80%), folate, zinc, selenium, carnitine, vit A &  $E^*$
    - Multivitamin supplement is safe and may alleviate deficiencies
      - If LHON, NARP, or retina involved: multivitamin w/ lutein
- Avoid fasting and encourage frequent small meals
- Increase fluid intake with heat and metabolic stress


## Mitochondrial Disease Patients have Nutritional Deficiencies



Divito D et al, Neurotherapeutics, 2023

PMD patients with inadequate calories had strong correlation between protein intake & outcome measures

FIG. 7 Correlations of objective assessments and surveys to macronutrient consumption (g/day and Kcal/day) in subjects with inadequate Kcal intake (≤75% predicted) (n=29). A Hip flexion strength



<sup>45</sup> Divito D et al, *Neurotherapeutics*, 2023

# Amino Acid Therapies for Mitochondrial Disease

- Arginine or Citrulline
  - Nitric oxide donors target microvascular endothelial ischemia that occurs in metabolic stroke
  - Intravenous use
    - Acute stroke treatment in MELAS (Koga et al, 2005)
      - Expert panel consensus to consider use (Parikh S et al, 2018)
      - Well-tolerated (monitor for hypotension & hypoglycemia)
    - Acute stroke treatment in diverse pediatric mito disease strokes beyond MELAS (Ganetzky and Falk, 2018)
      - Hemiplegic strokes: >50% clinical response by discharge
  - Enteral use
    - Prophylaxis for metabolic stroke occurrence/recurrence
    - Comparative arginine vs citrulline study underway
      - Fernando Scaglia, Baylor (NAMDC U54, NIH)



# No Clear Macronutrient Profile for Mitochondrial Disease

- No scientific data supports specific macronutrient profiles (ratios of protein, carbohydrate and fat) in mito disease<sup>1</sup>
- **KETOGENIC DIET is controversial** 
  - Increase ketones & succinate, starvation response, mitochondrial biogenesis, glutathione
    - KD slowed mitochondrial myopathy progression in *C100RF2* mice<sup>2</sup>
    - High-fat diet slowed neurologic progression in CI deficient *AIFM1* mice<sup>3</sup>
    - KD exacerbated disease in *MTRF2 & MPV17* mice<sup>4</sup>
  - KD is often not tolerated in patients<sup>5</sup>
    - Mito disease patients often have hypertriglyceridemia<sup>6</sup>
    - Mito disease patients often have decreased FAO & PPAR activity<sup>7</sup>
  - Long-term health risks may preclude KD use (? refractory epilepsy<sup>1</sup>)



# Modified Atkins Diet is Not Tolerated in mtDNA Deletion Myopathy Patients

- Modified Atkins Diet (mAD, 10 mos) well-tolerated & rescued myopathy in mtDNA 'deletor' myopathy *mice*
- Small human myopathy subject mAD clinical trial\*
  - 5 adult subjects with mtDNA deletions (2 single, 3 multiple) and 10 matched healthy controls
  - Switched from normal diet (ND) to planned 4 weeks on mAD
    - ND: 41-48% carb, 14-20% protein, 27-38% fat
    - mAD: 3-9% carb
  - mAD diet tolerability and effects:
    - <u>Healthy controls</u>: no problems completing 4 week trial
    - <u>mtDNA deletion myopathy subjects</u>: all 5 stopped diet after 4-11 days due to severe muscle pain/burning progressive from legs>back>arms>neck, headaches, and increased tiredness
      - Increased muscle fiber necrosis, increased CK, increased lactate with exercise, muscle fibers highly glycolytic



# **KETOGENIC DIET COMPONENTS MAY HAVE BENEFIT IN MITO DISEASE**

- Ketogenic diet *components* may hold potential therapeutic value
  - Triacylglyerol infusions improved exercise endurance in complex I deficiency mito myopathy patients<sup>1</sup>
  - Triheptanoin is anaplerotic and succinate precursor to bypass CI deficiency – showed benefit on cardiomyopathy in LCFAO disorder<sup>2</sup>
  - Decanoic acid (C10) improved mitochondrial mass, complex I activity, & PPARy activity over 6 days in neuronal culture<sup>3</sup>



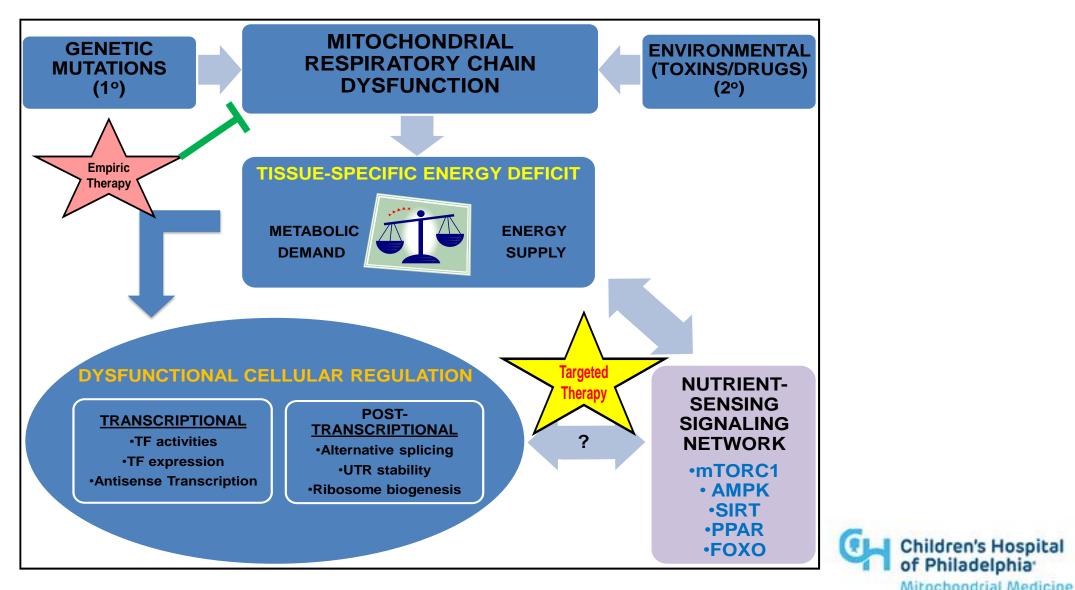
## Low-Glycemic Carbohydrate Diet May Have Therapeutic Role in Mito Disease

#### **SUPPORTING EVIDENCE:**

- Glycolytic rate is increased in primary mitochondrial disease<sup>1, 2</sup>
- Dextrose-containing IV fluids often used to prevent catabolism in metabolic crisis
- Anecdotal patient reports of carb-craving (including within minutes of awakening), with improved cognition and feeling of wellness after eating
- In vitro dysfunction in mito disease models & cells resolves with glucose treatment<sup>3</sup>
- Low glycemic carbohydrates may improve health outcomes (Shana McCormack)

#### **CONCERNS**:

- Glucose infusion may precipitate metabolic crisis by altered NADH/NAD<sup>+</sup> balance
- Drosophila model of mito translation defect had reduce growth in high glucose<sup>2</sup>
- Glucose dysregulation is common in mitochondrial diseases
  - Diabetes mellitus in some patients (adults>kids)
  - Hypoglycemia in some patients (kids>adults)


<sup>1</sup>Schrier-Vergano S et al, *Mol Gen Metab* 2014; <sup>2</sup>Kemppainen E et al, *PLOS ONE*, 2016; <sup>3</sup>Peng M et al, *Hum Mol Genet*, 2015; Kwon YJ et al, *Mitochondrion*, 2017





Guha M et al, Hum Mol Genet, 2021

## TARGETING MITOCHONDRIAL DISEASE THERAPIES TO DYSREGULATED CELLULAR PATHWAYS



Zhang and Falk, IJBCB, 2014

## EMERGING THERAPEUTIC ARSENAL FOR MITOCHONDRIAL DISEASE

Therapeutically targeting central alterations in the nutrient-sensing signaling network & basic cell processes that regulate proteotoxic stress may offer a personalized way to modify effects of OXPHOS dysfunction and improve health outcomes in primary mitochondrial disease

- SIRT Agonists
- > Nicotinic Acid
- > Resveratrol

#### **mTORC1** Inhibitors

- > Rapamycin
- > Probucol

### **PPAR Agonists**

- > Probucol
- > Rosiglitazone
- > Fenofibrate

# AMPK Agonists AICAR

53

## **Translation Inhibitors**

- > Cycloheximide
- > Actinomycin
- > Anisomycin

## Autophagy Inhibitors ≻ Lithium chloride

3-methyladenine

#### Nutrients ≻ Glucose

# Antioxidants ➢ Vitamin E ➢ N-acetylcysteine

#### **VISION:**

DEVELOP LAB TESTS TO DESIGN OPTIMAL DRUG TREATMENT(s) FOR EACH PATIENT USING THEIR OWN CELLS & ANIMAL MODELS



## New Model to Develop Precision Therapies for Mitochondrial Diseases

## Disease Definition

-Phenotype + Function -Biochemical -Organelle Genetic etiology -Molecular Pathway



-Organ system(s) -Pathophysiology -Function -Biomarker

## Lab testing of drugs in mito disease models

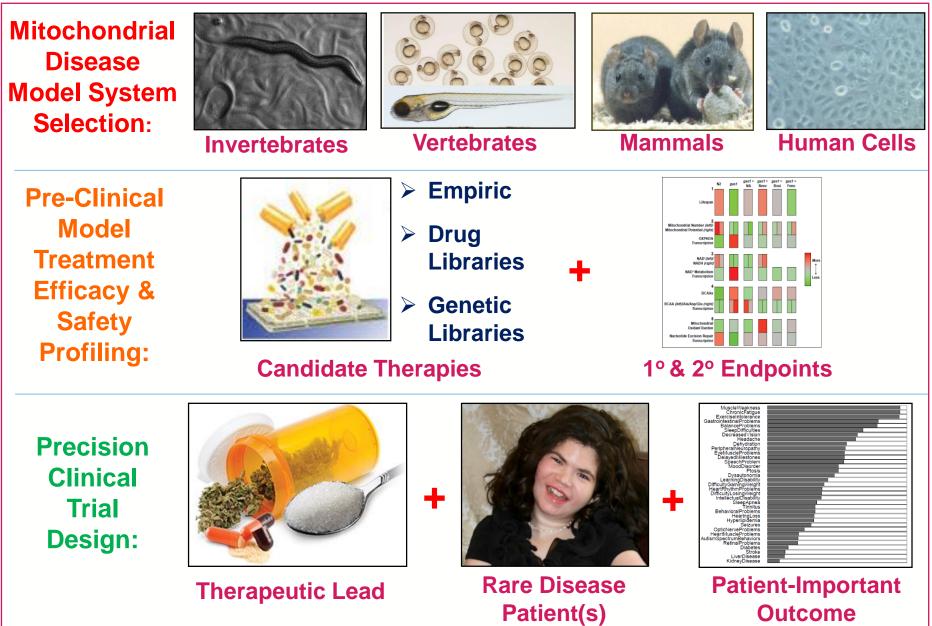
-Patients' cells (Fibroblasts vs Tissue-specific) -Genetic models of RC disease -Integrated physiologic endpoints -Toxicity studies Treatment Options

-Off-purpose FDA drugs -Medical Foods -Dietary Supplements -Vitamins -New drugs from

Clinical

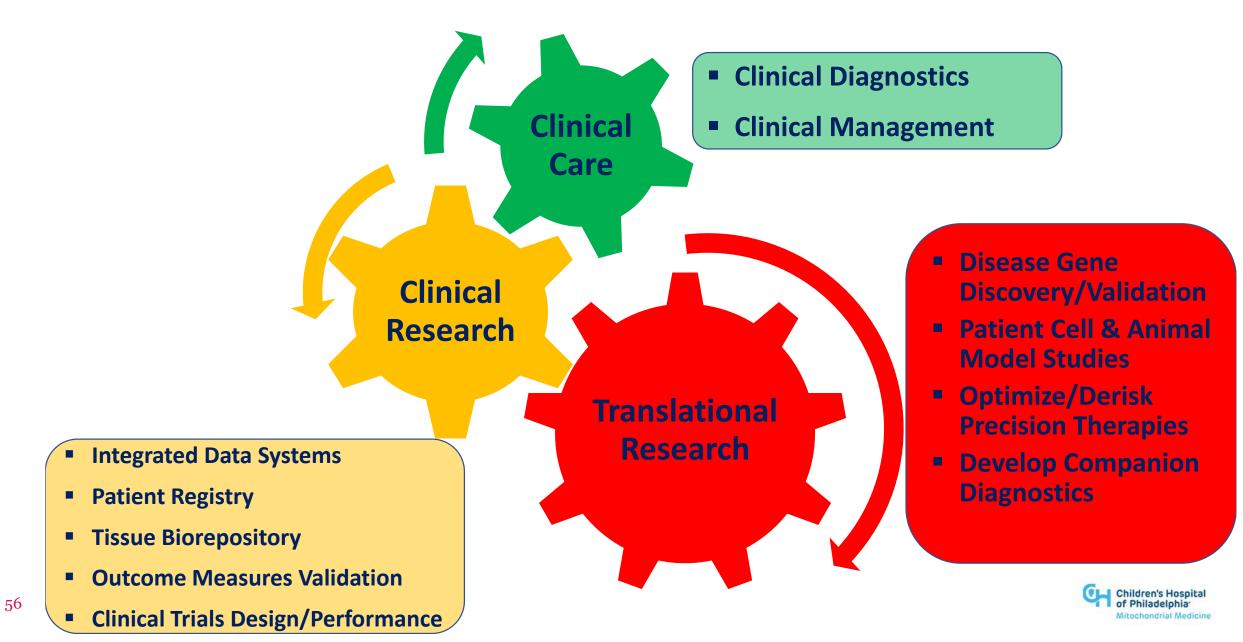
**Trials** 

Standard


of Care

Pkw

**C**H


\*Falk MJ et al, Natl Acad Med Workshop: 'Enabling Precision Medicine', 2017

## **Precision Mitochondrial Medicine**



**CH** 

## **MITOCHONDRIAL MEDICINE FRONTIER PROGRAM**



# CONCLUSIONS

1. MITOCHONDRIAL DISEASE IS HIGHLY HETEROGENEOUS BUT RECOGNIZABLE

– Phenotypic and genetic variability

2. MOLECULAR DIAGNOSTIC TESTING IS ESSENTIAL IN SUSPECTED MITOCHONDRIAL DISEASE

- Nuclear (>350) and mtDNA (37) gene disorders

- 3. STANDARD OF CARE GUIDELINES NOW EXIST FOR MITOCHONDRIAL DISEASE MANAGEMENT
  - Precision mitochondrial medicine is increasing possible



## THANK YOU! ANY QUESTIONS?



